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ABSTRACT

Methods for the estimation of Bayesian networks,
flexible frameworks allowing the representation of
conditional independence relationships of sets of
variables, typically require a data set that consists
of independent and identically distributed samples.
Often the data set available will be more com-
plex, containing information on exogenous vari-
ables thought to affect the variables of interest. We
consider score-based methods for learning Bayesian
networks, and demonstrate that the use of a score
metric that fails to take account of such complexities
may result in the estimation of a network with many
spurious edges. We provide two new score metrics
that do take account of these complexities, extend-

INTRODUCTION

Learning the structure of Bayesian networks given
high-dimensional data sets is an important area of
research, to which much effort has recently been
dedicated. The network structure, which encodes
conditional independence relationships of sets of
variables, is useful in the exploration of systems of
interacting genes, known as genetic regulatory net-
works. Bayesian networks provide tools for the rep-
resentation of regulatory networks that are able to
cope with noisy expression data obtained through
experiments.

Consider a p-dimensional normally distrbuted ran-
dom vector X ~ N(0,3), where each X, repre-
sents the expression level of a gene. A Bayesian
network B = (G,0), © = {61,...,0,}, for
X consists of two components: a directed acyclic
graph associated with X, G = (V,E), V =
{X1,...,X,}, E C V xV, and a set of condi-
tional distributions { f(z;|zp,,0;)}. The set P; is
the set of those variables in G such that (j,) € E,
and is called the set of parents of X;. The joint dis-
tribution of X can be decomposed according to the

ing the utility of score-based methods for learning
Bayesian networks to data sets that do not necessar-
ily consist of independent and identically distributed
samples. The first is a fully Bayesian metric, where
a prior distribution is placed upon the effects of ex-
ogenous variables, and the second is based upon a
restricted maximum likelihood approach to account
for the effects of exogenous variables, which we call
the residual approach. The utility of these metrics is
demonstrated through their application to simulated
data, and to a gene expression data set that contains
data on covariates thought to affect gene expression
levels. Finally, these two metrics are compared, and
theoretical justification for the use of the residual
approach instead of the Bayesian approach is pro-
vided.

graph in the following way:
P
f(10) = T] f(@ilzp,, 6:).
i=1

We consider the case where both the parameters ©
and the structure of the directed acyclic graph en-
coding the conditional independence relationships
of X are unknown. Given a data set d consisting
of n samples of each of the p random variables,
we focus on learning the graphical structure of the
Bayesian network. Methods for learning the under-
lying graph can be grouped into two main classes:
constraint-based methods, and score-based meth-
ods.

Constraint-based methods work by considering the
local structure of each random variable, and test-
ing for conditional independence relationships of
each random variable. The results of these hypoth-
esis tests are then combined to form a valid di-
rected acyclic graph. These methods can be sensi-
tive to type I and II errors, particularly in the case of
small sample size. We will not discuss constraint-
based methods further, and refer interested readers
to Chapter 18 of Koller and Friedman (2009).



Score-based methods work by attempting to max-
imise an appropriately-chosen score metric that de-
scribes how well different graphical structures en-
code the conditional independence relationships of
X. An obvious choice of score metric is the like-
lihood of directed acyclic graphs on p nodes, how-
ever, the structure that maximises this likelihood is
the complete directed acyclic graph, which encodes
no conditional independence relationships. Hence,
we will consider Bayesian score metrics, which
avoid the problem of overfitting.

Following Geiger and Heckerman (2002) among
others, the Bayesian score of a directed acyclic
graph G for a random vector X is proportional to
the posterior probability of the graph given the data
set d:

5(Gld) = p(G)p(d|G)

:p(G)/p(d\G, ©)p(O]G)doe. (1)

We focus on the second component of this score,
the marginal model likelihood of the data given a
graph G, where the density of d given G and O is
assumed to be an n X p-dimensional normal density,
with mean vector 0 and covariance matrix ¥ ® I,,.

When the data set d consists of independent and
identically normally distributed samples, 6; =

{~i, i}, and
xi | p;, Vi, Vi ~ Np (xp, i, ¥ily) - )

As can be seen in (1), in addition to the likelihood,
a prior distribution over the space of parameters,
p(©|G), is also required in the specification of the
Bayesian score. As described by Geiger and Heck-
erman (2002), an Inverse-Wishart prior on ©, or
equivalent normal-inverse gamma priors on each 6;,
is required. The following priors are typically used
in the calculation of the Bayesian score metric:

Yilthi  ~ Nip,| (07%1)7
ot ~Ga(MLE) )

where 7 and § are user-specified parameters. Given
these priors, the score metric of Equation 1 can be
written as the product of the prior density on the
space of directed acyclic graphs, p(G), and p multi-
variate ¢ densities.

The score metric can then be used in conjunction
with an algorithm for moving through the space of
directed acyclic graphs, to find the graph that max-
imises the score metric. The most commonly-used
algorithm is greedy hill-climbing, see Chapter 18 of

Koller and Friedman (2009), although there do exist
others, such as high-dimensional Bayesian covari-
ance selection, Dobra et al. (2004).

SCORE METRICS FOR NON-IID SAMPLES

The assumption in Equation 2 is only appropriate
when the data set d consists of iid samples. Of-
ten, however, we will need to learn the structure of
a Bayesian network given a more complex data set.
The motivating example here is a data set consisting
of expression levels of heat shock genes of grapes,
where the grapes were sampled from three differ-
ent vineyards, and temperatures at the times lead-
ing up to the picking of the grapes was recorded.
Given the known relationships of these genes with
temperature, and the disparities between vineyards,
this data set cannot be considered to consist of in-
dependent and identically distributed samples. Due
to possible common relationships with temperature
and vineyard, failure to take account of these effects
in learning Bayesian network structure may result in
the inclusion of many spurious edges. Hence, there
is a need to account for the presence of the exoge-
nous variables of temperature and vineyard when
learning graphical structure.

We will now suppose that contained within the data
set d is information on exogenous variables thought
to affect the expression levels of the genes consid-
ered. If @) is the n X m matrix containing data on
the m exogenous variables, we suppose

xi | Tp;, Y, Vi bi ~ Ny (xp,ys + Qbiy i), (4)

where b; is the m-vector of the effects of the exoge-
nous variable on z;. In this specification, normality
and linear dependence upon parents is retained, and
more complex sampling schemes and the effects of
exogenous variables are accounted for.

As the definition of the Bayesian score metric in
(1) shows, a joint prior distribution for ~;,1; and
b; is required. Extension of the results in Geiger
and Heckerman (2002) to the model in (4) indicates
that the joint prior distribution for ;, v); and b; must
have a normal-inverse gamma form. We use the pri-
ors for v; and v; in (3), and suppose that

bi|di ~ N (0, ;1). )

While there are several possibilities for the variance
of the random effects ¢;, including placing a hyper
prior on it and treating it as a constant, an extension
of the results in Geiger and Heckerman shows that
the only choice that results in a score metric with a
closed form is taking ¢; = v~ '4);.

The score metric obtained through the use of this



prior density on the effects of exogenous variables
can be shown to be

P

Sp(Gld) = p(G) [ ] folwilar,),

=1
.
zilep, ~tsypy | 0, ———Q |,
|z p, §+PL< 5P )
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Removal of random effects through analysis of
residuals

Often the effects of exogenous variables are not of
particular interest, and are included in the model
to allow for structure to be learnt more accurately.
However, in many situations, the effects of exoge-
nous variables can be thought of as nuisances. Of
course, ignoring such effects is not recommended.
Instead, a non-parametric approach is developed for
use in such situations.

This approach, instead of directly using the gene ex-
pression data, is based upon the use of linear com-
binations of residuals left over when the data is re-
gressed upon the effects of the exogenous variables.
We call this the “residual approach”, and it is moti-
vated by the restricted maximum likelihood proce-
dure used in inference for mixed linear models; see
for example Section 12.2 of Davison (2003), and
Patterson and Thompson (1971).

This approach makes no assumptions about the
form of the distribution of the random effects. Since
no assumptions are made, the approach is correct no
matter what the true distribution of the random ef-
fects may be. Hence, in situations when the assump-
tion that b; | ¥; ~ Ny, (0, v’lwﬂ) is not satisfied,
the residual approach provides a useful alternative
to the BGeCM score metric. Further justification
for this metric is provided below.

We consider an n x (n — m) matrix P such that

PTQ = 0,
PTP = In—’rru
PPt = I,-QQ"Q)'Q".

Instead of considering x;, PTy; are used. It can
be shown that the score metric obtained using the

residual approach has the form:

Sr(Glid) = p(G) [ [ fr(PT il P zp,),

i=1
PTl‘i|PTxp. ~ tsy P, QLQR ,
i i 5+ |P’L|

-1

—1
Q= {1~ PTap, (11 +af, PPTap) " af P} .

Limiting Behaviour of Sp(G|d)

Consideration of the limiting behaviour of Sp and
Sr, the score metrics obtained under the Bayesian
and residual approaches is illuminating. We con-
sider the cases as v approaches 0 and co. Note
that large values of v correspond to situations where
the effects of exogenous variables are not a priori
thought to contribute greatly to the variability of the
X, while small values of v correspond to situations
where the variability of each X, is thought to be
largely driven by the variability of the exogenous
variables.

Upon examination of the score metrics Sp it can
be seen that as v — oo, Sp approaches the score
metric obtained when no exogenous variables are
present. This implies that when when the vari-
ances of the effects of exogenous variables are
small, the Bayesian networks estimated using the
full Bayesian approach will not be markedly differ-
ent from those estimated when the exogenous vari-
ables are ignored.

When v is small, on the other hand, H,, is close to
PPT, and the Bayesian score metric is an improper
score metric. In this situation, most of the variability
in each X; is due to variation in the effects of exoge-
nous variables, and when S is used, all Bayesian
networks will have a score of zero. Hence, for small
values of v, it is recommended that the residual ap-
proach be used instead of the Bayesian approach.

COMPARISON OF BAYESIAN AND RESID-
UAL APPROACHES

Results above indicate that the residual approach
may be thought of as an approximation, in a sense,
to the Bayesian approach, and a quantification of
the closeness of this approximation is important.
The residual and Bayesian approaches are com-
pared using the Kullback Leibler divergence to mea-
sure the distance between the posterior distribu-
tions obtained under each of these approaches. This
comparison provides further theoretical justification
for the residual approach by showing that the dis-
tance between the posterior densities obtained under



the Bayesian and residual approaches is generally
small, and decreasing as sample size increases.

The divergence

The Kullback Leibler divergence, Kullback and
Leibler (1951), between two posterior distributions
f(0]x) and g(0|x) is given by

el [0
Dt = [10e { LG0L rol0ys.

which is always non-negative, and minimised when
f = g. The Kullback Leibler divergence is a stan-
dard measure of the distance between two distribu-
tions, and can be thought of as a measure of the loss
of information about § when using ¢g(#|x) instead of
using f(6|x) to describe the posterior distribution of
0.

We consider the posterior densities of 7; and ;
obtained under each of the Bayesian and resid-
ual approaches, and obtain the Kullback Leibler
distance between these posteriors. The posteri-
ors obtained under the Bayesian and residual ap-
proaches are shown in Appendix A. We will use
fB(vi, ¥i|zi, 2 p,) to denote the joint posterior of 7;
and ; obtained under the Bayesian approach, and
fr(7i,¥ilzi, xp,) to denote the joint posterior ob-
tained under the residual approach.

The Kullback Leibler divergence between fp and
fr, which we will denote by D(f5, fr), is shown
in Appendix B. If the graphical structure of the
Bayesian network for X is known, the divergence
between fp(X|X), the posterior density of X (the
marginal covariance matrix of X) obtained under
the Bayesian approach, and fr(X|X), the posterior
obtained under the residual approach, is then avail-
able:

Ds {fs(E|X), fr(X]X)}

= "D {fs(vi¥ilzi,xp,), fr(vis Yilzi 2p,)} -

=1

Typically the underlying graphical structure will not
be known, but the divergence for a graph will be
bounded by the divergence for the covariance ma-
trix corresponding to the empty graph and the di-
vergence corresponding to the covariance matrix of
an arbitrary full graph.

The following theorem justifies the use of the resid-
ual approach as an approximation to the Bayesian
approach:

Thm.1 Asn — o0, Dy {fB(E‘lX), fR(E|X)} — 0.

The proof of this theorem is omitted. The theorem
tells us that as sample size increases, the posteriors
obtained using the residual approach more closely
approximate those obtained using the Bayesian ap-
proach.

EXAMPLE 1

Here we present an example that demonstrates the
importance of accounting for exogenous variables
in learning Bayesian network structure. Ten data
sets were generated according to the following sys-
tem of linear recursive equations

Xijr = bij + €ijr, €~ N(0,9;),

i =1,...,100, 5 = 1,2, k = 1,...,50. The
values of v; were obtained by sampling from an
Inverse Gamma(1,1/2) distribution, and are con-
stant for each of the samples generated. Similarly,
b; = (bil,biQ)T, 1 = 1,...,100, are fixed across
data sets, obtained by sampling from

bi; ~ N(0,¢;), i=1,...,100; j =1,2,

corresponding to v = 1. The non-zero mean struc-
ture of this example corresponds to two groups, and
the true underlying directed acyclic graph is the
empty graph.

Directed acyclic graphs were learnt for each of these
10 data sets, first using the original score metric,
then using Sp and Sg, using the high-dimensional
Bayesian covariance selection, Dobra et al. (2004),
to move through the graph space. The mean and
standard deviation of the number of edges obtained
using each of these three score metrics is sum-
marised in Table 1.

Table 1: Results of Example 1. The mean
number of edges obtained when each score
metric is used. Standard deviation in brackets.

Score metric  Number of edges

Original 117.2 (5.25)
Sp 1.0 (0.94)
Sr 1.7 (1.16)

These results indicate that when exogenous vari-
ables are ignored, the highest-scoring graph found
tends to have many more edges than the true graph.
When either Sp or Sg is used, a graph that is much
closer to the true graph is obtained. This demon-
strates the necessity of these two score metrics.

GRAPE GENE EXAMPLE

The data set considered here consists of fifty sam-
ples of gene expression levels for 26 grape genes.



The gene expression levels were derived from grape
berry tissue samples grown in three different vine-
yards in South Australia. The 26 grape genes con-
sidered here are known to code for heat shock pro-
teins (HSPs), Wang et al. (2004), which are re-
sponsible for protecting grapes against heat-induced
stress. Accordingly, air temperature at each vine-
yard was recorded every hour from 5.5 hours to 0.5
hours before grapes were sampled.

Learning the conditional dependence structure
of the genes

Understanding the stress tolerance mechanisms of
plants is important, and the heat shock protein net-
work, as discussed by Kotak et al. (2007) and Wang
et al. (2004), is very complex. Precisely how Hsps
interact with one another and how they protect
against heat stress is not yet completely understood,
and here we seek to gain some insight into the heat
shock protein network by examining the conditional
dependence structure of these genes.

Given the known functions of the genes considered
here and the climatic and geographic disparities be-
tween vineyards, it is important to account for the
exogenous variables of temperature and vineyard in
the estimation of a Bayesian network for the grape
genes. If the expression levels of genes are strongly
influenced by temperature, and temperature is ig-
nored, then an observed conditional dependence re-
lationship between two genes may simply be due to
a common response to temperature, and not due to
any regulatory mechanism between the genes.

Initially, no attempt is made to account for the ef-
fects of temperature and vineyard in the estima-
tion of a Bayesian network for the genes. The
Bayesian score metric is used in conjunction with
the high-dimensional Bayesian covariance selection
algorithm, Dobra et al. (2004), and the highest-
scoring network found has 55 edges, the moralised
version of which has 130 edges.The moralised ver-
sion is shown in Figure 1(a).

How best to include temperature and vineyard ef-
fects in the model for gene expression was investi-
gated using linear regression models with forward
and backward selection. The largest model con-
sidered for each gene contains separate intercepts
for each vineyard, and terms for each of the 6 tem-
peratures recorded before the picking of the grapes.
Each of the vineyard or temperature coefficients is
significant in at least one of the 26 regressions. We
first consider the model including only vineyard ef-
fects, and then consider the model including vine-
yard and temperature effects.

Figure 1: The moral versions of the highest-
scoring graphs obtained for the grape genes
when (a) the effects of temperature and vine-
yard are ignored, and when the residual ap-
proach is used to include (b) vineyard effects,
and (c) vineyard effects and main temperature
effects.



We use the residual approach, with score metric Sg,
in conjunction with the high-dimensional Bayesian
covariance selection algorithm, to find high-scoring
graphs when we include the effects of the exoge-
nous variables of temperature and vineyard in the
model. We use Sg since the score metric S uses
the prior assumption that the effects of the exoge-
nous variables are independent and identically dis-
tributed. In the case of the model that includes
only temperature, such an assumption may be valid.
However, it is probably not realistic to assume that
the effects of temperature and vineyard are iid.

Figure 1(b) and (c) shows the highest-scoring
graphs obtained using this approach. Immediately
apparent is that as more of the variation of the
expression levels is accounted for, the sparser the
moral versions of the highest-scoring graphs ob-
tained become. Due to the relationships of the
considered genes with temperature, the most use-
ful graph is that in Figure 1(c). Seven nodes in this
graph are completely disconnected from all other
nodes, indicating that the expression levels of these
genes are independent of the expression levels of
all other genes, once the effects of temperature and
vineyard have been accounted for.

Three of these seven disconnected nodes correspond
to Hsp 81 - an early response to dehydration. In
discussions of the response of plants to heat stress,
summarised in Kotak et al. (2007) and Wang et al.
(2004), Hsp70 proteins (genes 1,2 and 3) and small
HSPs (genes 5 and 13-26) are most focussed on.
It is thought that the heat shock pathway consists
of interactions between small Hsps, Hsp60, Hsp70,
Hsp90, and Hsp100. Hsp 81 proteins (genes 9, 10
and 11), are not mentioned in connection with the
heat shock protein network. The special role of
Hsp81 proteins in Arabidopsis thaliana has been
discussed in Yabe et al. (1994), in which it was
noted that an increase in the expression level of
Hsp81-1 is possibly caused by a regulatory pathway
other than the heat shock pathway. Our analysis in-
dicates that Hsp81 is not implicated in the protec-
tion of grapes against heat stress, and is evidence
that the role of these genes requires further investi-
gation.

Comparison of the Residual and Bayesian ap-
proaches

In the above section, Sg, the residual approach
score metric, was used to estimate conditional de-
pendence structure. We noted that Sr was appro-
priate when we included the effects of both vineyard
and temperature, since these effects are probably not
iid. However, when only vineyard is included in the

Vineyards

20
|

15

Divergence

upsilon

Figure 2: Upper and lower bounds of the di-
vergence for the marginal covariance matrix
of the 26 grape genes, when vineyards are in-
cluded as exogenous variables in the analysis.
The solid line corresponds to the divergence
for the empty graph, the dashed line to the di-
vergence of an arbitrary full graph.

model, use of the Bayesian score metric S may be
more appropriate, since these effects can reasonably
be thought of as iid.

Using the Kullback Leibler divergence, we compare
the residual and Bayesian approaches. This com-
parison can be interpreted as the amount of infor-
mation lost about the marginal covariance matrix if
the residual approach, instead of the Bayesian ap-
proach, is used. If b; = (b;1, b2, bi3>T represents
the effects of the three vineyards on the expression
of gene ¢, the prior density for b; assumed under the
Bayesian approach is b; ~ N3(0,v =1, 1).

Since the true underlying graph is unknown, and v
is an unknown parameter, we calculate bounds for
Dyx.(fB, fr) as described above. The results are dis-
played in Figure 2. This figure indicates that for all
considered values of v, if the true underlying graph
is sparse, as many biological networks are thought
to be, the loss of information about the marginal co-
variance matrix when the residual approach is used
will be minimal.

CONCLUSIONS

The score metrics presented here, Sp and Sp, ex-
tend the utility of score-based methods for learn-
ing Bayesian network structure to situations where
the available data set does not consist of iid sam-
ples. Through consideration of the Kullback Leibler
divergence between the posteriors obtained under
each of these approaches, further justification for
the residual approach was provided. The necessity



of score metrics that take account of the effects of
exogenous variables was demonstrated. The use of
these score metrics in the analysis of the grape gene
example resulted in biologically plausible conclu-
sions being drawn, and a conditional dependence
structure that can be used in the generation of hy-
potheses about the interaction of grape heat shock
genes. We recommend that the presence of exoge-
nous variables in a data set should always be ac-
counted for in the estimation of graphical structure,
and when a score-based method for learning struc-
ture is taken, these score metrics provide methods
for doing so.
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APPENDIX A

The posteriors obtained under the Bayesian ap-
proach are given by

“1
Yili, xi, wp, ~ Nip,) <HB;1/% (tI+2p Hoxp,) ) )

-1
up = (TI + xngiH,,o:pi) IgiHuiEi,
0 P;
Y|z, xp, ~ Inv.Gam. <+n;||»53) ’
1
ﬁB = % + §CU;THU$Z
1 —
- EszHVl'Pi (rI+ :v}TpiHvxpi) ! xIT,ivai_

The posteriors obtained under the residual approach
are given by

-1
Yilthi, xi, P, ~ Nip,| (MR,%' (rI +xp, PP zp,) ) ;
UR = (TI—|—xgiPPTa:pi)_lx;iPPTxi,

§+n—m+|P 3 >
- 5 R 7

Yilzi, xp, ~ Inv.Gam. ( 3

1
Bp = g + 5ui PP

1 _
— el PP ap, (v1 + o}, PP ep) Y2l PP,

APPENDIX B

The Kullback Leibler divergence between fp and
fr is given by

’T[ + :rgiHpri
|71 + x5, PPTxp,

D(f. fr) = 3 log (

1 - P;
+ §tr {(TI+$£iPPT$p£) (Tl—l—xgiHvajpi) 1} — | 2'
+ MTH (ur — pp)" (rI+2p, PPTap) (ur — 1)

5 P 3 T (6+n—m+|P¢|>
N wlog (B) flogd V)
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